Showing posts with label class_10_Math. Show all posts
Showing posts with label class_10_Math. Show all posts
Class 10 MATH / āĻĻāĻļāĻŽ āĻļ্āϰেāĻŖি āĻ—āĻŖিāϤ - āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ, āĻ•āώে āĻĻেāĻ–ি ā§§.ā§§
āĻāĻ–াāύে āφāĻŽāϰা āĻ•্āϞাāϏ ā§§ā§Ļ āĻāϰ āĻ—āĻŖিāϤ āĻŦāχ āĻāϰ ā§§āĻŽ āĻ…āϧ্āϝা⧟, āĻ•āώে āĻĻেāĻ–ি ā§§.ā§§ āĻāϰ āωāϤ্āϤāϰ āĻ•āϰে āĻĻি⧟েāĻ›ি । āĻāĻ—ুāϞি āĻ–ুāĻŦ āχ āϏুāύ্āĻĻāϰ, āϏāĻšāϜ āĻāĻŦং āϏāĻ িāĻ• āĻ­াāĻŦে āĻ•āϰা । āĻ•āώে āĻĻেāĻ–ি ā§§.ā§§ āĻ•ে āφāĻŽāϰা 2 āϟো Part āĻ āĻ­াāĻ— āĻ•āϰে āωāϤ্āϤāϰ āĻ•āϰে āĻĻি⧟েāĻ›ি । āĻāϟা Part 1 ।

āĻāĻ•āϚāϞāĻŦিāĻļিāώ্āϟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ

āĻ•āώে āĻĻেāĻ–ি ā§§.ā§§

~: āĻ—āĻŖিāϤ āĻĒ্āϰāĻ•াāĻļ:~

~: Part - 1:~

1. āύিāϚেāϰ āĻŦāĻšুāĻĒāĻĻী āϏংāĻ–্āϝাāĻŽাāϞা āĻ—ুāϞিāϰ āĻŽāϧ্āϝে āĻ•োāύāϟি / āĻ•োāύāĻ—ুāϞি āĻĻ্āĻŦিāϘাāϤ āĻŦāĻšুāĻĒāĻĻী āϏংāĻ–্āϝাāĻŽাāϞা āĻŦুāĻে āϞিāĻ–ি ।
(i) x²-7x+2

āϏāĻŽাāϧাāύঃ-

āĻāϟি āĻāĻ•āϟি āĻĻ্āĻŦিāϘাāϤ āĻŦāĻšুāĻĒāĻĻী āϏংāĻ–্āϝাāĻŽাāϞা āĻ•াāϰāĻŖ āĻāĻ–াāύে āĻŦāĻšুāĻĒāĻĻী āϏংāĻ–্āϝাāĻŽাāϞা x āĻāϰ āϏāϰ্āĻŦোāϚ্āϚ āϘাāϤ 2 ।

(ii) 7x⁵-x(x+2)

āϏāĻŽাāϧাāύঃ-

7x⁵-x(x+2)

=7x⁵-x²-2x

āĻāϟি āĻāĻ•āϟি āĻŦāĻšুāĻĒāĻĻী āϏংāĻ–্āϝাāĻŽাāϞা āĻšāϞেāĻ“, āĻĻ্āĻŦিāϘাāϤ āĻŦāĻšুāĻĒāĻĻী āϏংāĻ–্āϝাāĻŽাāϞা āύāϝ় āĻ•াāϰāĻŖ āĻāĻ•্āώেāϤ্āϰে x āĻāϰ āϏāϰ্āĻŦোāϚ্āϚ āϘাāϤ 5 ।

(iii) 2x(x+5)+1

āϏāĻŽাāϧাāύঃ-

2x(x+5)+1

=2x²+10x+1

āĻāϟি āĻāĻ•āϟি āĻĻ্āĻŦিāϘাāϤ āĻŦāĻšুāĻĒāĻĻী āϏংāĻ–্āϝাāĻŽাāϞা āĻ•াāϰāĻŖ āĻāĻ–াāύে x āĻāϰ āϏāϰ্āĻŦোāϚ্āϚ āϘাāϤ 2 ।

(iv) 2x-1

āϏāĻŽাāϧাāύঃ-

āĻāϟি āĻāĻ•āϟি āĻĻ্āĻŦিāϘাāϤ āĻŦāĻšুāĻĒāĻĻী āϏংāĻ–্āϝাāĻŽাāϞা āύ⧟ āĻ•াāϰāĻŖ āĻāĻ–াāύে x āĻāϰ āϏāϰ্āĻŦোāϚ্āϚ āϘাāϤ 2 āύেāχ ।

2. āύিāϚেāϰ āϏāĻŽীāĻ•āϰāĻŖ āĻ—ুāϞিāϰ āĻ•োāύāϟি ax²+bx+c = 0 , āϝেāĻ–াāύে a, b, c āĻŦাāϏ্āϤāĻŦ āϏংāĻ–্āϝা āĻāĻŦং a ≠ 0, āφāĻ•াāϰে āϞেāĻ–া āϝাāϝ় āϤা āϞিāĻ–ি ।
(i) x - 1 + 1/x = 6, (x≠0)

āϏāĻŽাāϧাāύঃ-

x - 1 + 1/x = 6

āĻŦা, x2 - x + 1 = 6x

āĻŦা, x2- x + 1 - 6x = 0

āĻŦা, x2- 7x + 1 = 0

∴ āĻĒ্āϰāĻĻāϤ্āϤ āϏāĻŽীāĻ•āϰāĻŖāϟিāĻ•ে ax2 + bx + c āφāĻ•াāϰে āĻĒ্āϰāĻ•াāĻļ āĻ•āϰা āĻšāϞ ।

(ii) x + 3/x = x2 , (x≠0)

āϏāĻŽাāϧাāύঃ-

x + 3/x = x2

āĻŦা, x2 + 3 = x3

āĻŦা, x2- x3 + 3 = 0

∴ āĻĒ্āϰāĻĻāϤ্āϤ āϏāĻŽীāĻ•āϰāĻŖāϟিāĻ•ে ax2 + bx + c āφāĻ•াāϰে āĻĒ্āϰāĻ•াāĻļ āĻ•āϰা āϝা⧟ āύা ।

(iii) x2 - 6x + 2 = 0

āϏāĻŽাāϧাāύঃ-

x2 - 6x + 2 = 0

āĻŦা, x2 - 6x1/2 + 2 = 0

∴ āĻĒ্āϰāĻĻāϤ্āϤ āϏāĻŽীāĻ•āϰāĻŖāϟিāĻ•ে ax2 + bx + c āφāĻ•াāϰে āĻĒ্āϰāĻ•াāĻļ āĻ•āϰা āϝা⧟ āύা ।

(iv) (x-2)2 = x2 - 4x + 4

āϏāĻŽাāϧাāύঃ-

(x-2)2 = x2 - 4x + 4

āĻŦা, x2 - 4x + 4 = x2 - 4x + 4 [ āϝেāĻšেāϤু , (x-2)2 = (x)2 - 2.x.2 + (2)2 ]

∴ āĻĒ্āϰāĻĻāϤ্āϤ āϏāĻŽীāĻ•āϰāĻŖāϟিāĻ•ে ax2 + bx + c āφāĻ•াāϰে āĻĒ্āϰāĻ•াāĻļ āĻ•āϰা āϝা⧟ āύা ।

3. x6 - x3 - 2 = 0 āϏāĻŽীāĻ•āϰāĻŖāϟি āϚāϞেāϰ āĻ•োāύ āϘাāϤ āĻāϰ āϏাāĻĒেāĻ•্āώে āĻāĻ•āϟি āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āϤা āύিāϰ্āϪ⧟ āĻ•āϰি ।

āϏāĻŽাāϧাāύঃ-

x6 - x3 - 2 = 0

āĻŦা, (x3)2 - x3 - 2 = 0

∴ āĻĒ্āϰāĻĻāϤ্āϤ āϏāĻŽীāĻ•āϰāĻŖāϟিāĻ•ে ax2 + bx + c āφāĻ•াāϰে āĻĒ্āϰāĻ•াāĻļ āĻ•āϰা āĻšāϞ ।

∴ āĻĒ্āϰāĻĻāϤ্āϤ āϏāĻŽীāĻ•āϰāĻŖ āϟি x3 āĻāϰ āϏাāĻĒেāĻ•্āώে āĻāĻ•āϟি āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ ।

4.(i) (a-2)2 + 3x + 5 = 0 āϏāĻŽীāĻ•āϰāĻŖāϟি a āĻāϰ āĻ•োāύ āĻŽাāύেāϰ āϜāύ্āϝ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāĻŦেāύা āϤা āύিāϰ্āϪ⧟ āĻ•āϰি ।

āϏāĻŽাāϧাāύঃ-

āĻĒ্āϰāĻĻāϤ্āϤ āϏāĻŽীāĻ•āϰāĻŖāϟি āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāĻŦেāύা āϝāĻĻি a - 2 = 0 āĻšā§Ÿ ।

a - 2 = 0

āĻŦা, a = 2

∴ a = 2 āĻšāϞে āĻĒ্āϰāĻĻāϤ্āϤ āϏāĻŽীāĻ•āϰāĻŖ āϟি āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāĻŦেāύা ।

4.(ii) x/4-x = 1/3x (x ≠ 0 , x ≠ 4 ) āĻ•ে ax2 + bx + c = 0 ( a ≠ 0 ) āφāĻ•াāϰে āĻĒ্āϰāĻ•াāĻļ āĻ•āϰāϞে x āĻāϰ āϏāĻšāĻ— āĻ•āϤ āĻšāĻŦে āϤা āύিāϰ্āϪ⧟ āĻ•āϰি ।

āϏāĻŽাāϧাāύঃ-

x/4-x = 1/3x

āĻŦা, 3x2 = 4 - x

āĻŦা, 3x2 + x - 4 = 0

∴ x āĻāϰ āϏāĻšāĻ— āĻšāĻŦে 1 ।

4.(iii) 3x2 + 7x + 23 = (x+4)(x+3) + 2 āĻ•ে ax2 + bx + c = 0 ( a ≠ 0 ) āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖেāϰ āφāĻ•াāϰে āĻĒ্āϰāĻ•াāĻļ āĻ•āϰি ।

āϏāĻŽাāϧাāύঃ-

3x2 + 7x + 23 = (x+4)(x+3) + 2

āĻŦা, 3x2 + 7x + 23 = x2 + 4x + 3x + 12 + 2

āĻŦা, 3x2 + 7x + 23 = x2 + 7x + 14

āĻŦা, 3x2 - x2 + 7x -7x + 23 - 14 = 0

āĻŦা, 2x2 + 9 = 0

āĻŦা, 2x2 + 0x + 9 = 0

∴ āĻĒ্āϰāĻĻāϤ্āϤ āϏāĻŽীāĻ•āϰāĻŖāϟিāĻ•ে ax2 + bx + c āφāĻ•াāϰে āĻĒ্āϰāĻ•াāĻļ āĻ•āϰা āĻšāϞ āϝেāĻ–াāύে a ≠ 0 ।

4.(iv) (x+2)3 = x (x2 - 1 ) āĻ•ে ax2 + bx + c = 0 , ( a ≠ 0 ) āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖেāϰ āφāĻ•াāϰে āĻĒ্āϰāĻ•াāĻļ āĻ•āϰি āĻāĻŦং x2 , x āĻ“ x0 āĻāϰ āϏāĻšāĻ— āϞিāĻ–ি ।

āϏāĻŽাāϧাāύঃ-

(x+2)3 = x (x2 - 1 )

āĻŦা, (x)3 + 3 (x)2 (2) + 3 (x) (2)2 + (2)3 = x3 - x

āĻŦা, x3 + 6x2 + 12x + 8 = x3 - x

āĻŦা, x3 + 6x2 + 12x + 8 - x3 + x = 0

āĻŦা, 6x2 + 13x + 8 = 0

∴ āĻĒ্āϰāĻĻāϤ্āϤ āϏāĻŽীāĻ•āϰāĻŖāϟিāĻ•ে ax2 + bx + c āφāĻ•াāϰে āĻĒ্āϰāĻ•াāĻļ āĻ•āϰা āĻšāϞ āϝেāĻ–াāύে a ≠ 0 āĻāĻŦং x2 āĻāϰ āϏāĻšāĻ— 6 , x āĻāϰ āϏāĻšāĻ— 13 āĻāĻŦং x0 āĻāϰ āϏāĻšāĻ— 8 ।

āĻŦাāĻ•ি āĻĒ্āϰāĻļ্āύেāϰ āĻāϰ āωāϤ্āϤāϰ āĻ—ুāϞি Part 2 āĻ āφāϏāĻŦে ।

WBBSE

Class 10 MATH / āĻĻāĻļāĻŽ āĻļ্āϰেāĻŖি āĻ—āĻŖিāϤ

āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ, āĻ•āώে āĻĻেāĻ–ি ā§§.ā§§

āĻāĻ–াāύে āφāĻŽāϰা āĻ•্āϞাāϏ ā§§ā§Ļ āĻāϰ āĻ—āĻŖিāϤ āĻŦāχ āĻāϰ ā§§āĻŽ āĻ…āϧ্āϝা⧟, āĻ•āώে āĻĻেāĻ–ি ā§§.ā§§ āĻāϰ āωāϤ্āϤāϰ āĻ•āϰে āĻĻি⧟েāĻ›ি । āĻāĻ—ুāϞি āĻ–ুāĻŦ āχ āϏুāύ্āĻĻāϰ, āϏāĻšāϜ āĻāĻŦং āϏāĻ িāĻ• āĻ­াāĻŦে āĻ•āϰা । āĻ•āώে āĻĻেāĻ–ি ā§§.ā§§ āĻ•ে āφāĻŽāϰা 2 āϟো Part āĻ āĻ­াāĻ— āĻ•āϰে āωāϤ্āϤāϰ āĻ•āϰে āĻĻি⧟েāĻ›ি । āĻāϟা Part 2

āĻāĻ•āϚāϞāĻŦিāĻļিāώ্āϟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ

āĻ•āώে āĻĻেāĻ–ি ā§§.ā§§

~: āĻ—āĻŖিāϤ āĻĒ্āϰāĻ•াāĻļ:~

~: Part - 2:~

1. āύিāϚেāϰ āĻŦিāĻŦৃāϤ āĻ—ুāϞি āĻĨেāĻ•ে āĻāĻ•āϚāϞ āĻŦিāĻļিāώ্āϟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻ—āĻ āύ āĻ•āϰি ।

(i) 42 āĻ•ে āĻāĻŽāύ āĻĻুāϟি āĻ…ংāĻļে āĻ­াāĻ— āĻ•āϰো āϝাāϤে āĻāĻ•āϟি āĻ…ংāĻļ āĻ…āĻĒāϰ āĻ…ংāĻļেāϰ āĻŦāϰ্āĻ—েāϰ āϏāĻŽাāύ āĻšā§Ÿ ।

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āĻāĻ•āϟি āĻ…ংāĻļ = X

āĻ…āĻĒāϰ āĻ…ংāĻļ = (42-X) , [āϝেāĻšেāϤু āĻŽোāϟ āĻ…ংāĻļ 42]

āĻļāϰ্āϤাāύুāϏাāϰে,

          X2 = 42 - X

      āĻŦা,   X2 + X - 42 = 0

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ X2 + X - 42 = 0 ।


(ii) āĻĻুāϟি āĻ•্āϰāĻŽিāĻ• āϧāύাāϤ্āĻŽāĻ• āĻ…āϝুāĻ—্āĻŽ āϏংāĻ–্āϝাāϰ āĻ—ুāύāĻĢāϞ 143

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āĻāĻ•āϟি āϏংāĻ–্āϝা = X

āĻ…āĻĒāϰ āϏংāĻ–্āϝাāϟি āĻšāĻŦে = (X + 2) , [ āϝেāĻšেāϤু āĻ•্āϰāĻŽিāĻ• āϧāύাāϤ্āĻŽāĻ• āĻ…āϝুāĻ—্āĻŽ āϏংāĻ–্āϝা ]

āĻļāϰ্āϤাāύুāϏাāϰে,

          X (X+2) = 143

      āĻŦা,   X2 + 2X - 143 = 0

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ X2 + 2X - 143 = 0 ।


(iii) āĻĻুāϟি āĻ•্āϰāĻŽিāĻ• āϏংāĻ–্āϝাāϰ āĻŦāϰ্āĻ—েāϰ āϏāĻŽāώ্āϟি 143

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āĻāĻ•āϟি āϏংāĻ–্āϝা = X

āĻ…āĻĒāϰ āϏংāĻ–্āϝাāϟি āĻšāĻŦে = (X + 1) , [ āϝেāĻšেāϤু āĻ•্āϰāĻŽিāĻ• āϏংāĻ–্āϝা ]

āĻļāϰ্āϤাāύুāϏাāϰে,

          X2 + (X+1)2 = 313

      āĻŦা,   X2 + X2+ 2X + 1 = 313

      āĻŦা,   2X2 + 2X + 1 = 313

      āĻŦা,   2X2 + 2X + 1 - 313 = 0

      āĻŦা,   2X2 + 2X - 312 = 0

      āĻŦা,   2 (X2 + X - 156 ) = 0

      āĻŦা,   X2 + X - 156 = 0

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ X2 + X - 156 = 0 ।


6.āύিāϚেāϰ āĻŦিāĻŦৃāϤ āĻ—ুāϞি āĻĨেāĻ•ে āĻāĻ•āϚāϞ āĻŦিāĻļিāώ্āϟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻ—āĻ āύ āĻ•āϰি ।

(i) āĻāĻ•āϟি āĻ†ā§ŸāϤāĻ•াāϰ āĻ•্āώেāϤ্āϰেāϰ āĻ•āϰ্āĻŖেāϰ āĻĻৈāϰ্āϘ্āϝ 15 āĻŽিāϟাāϰ āĻāĻŦং āϤাāϰ āĻĻৈāϰ্āϘ্āϝ āĻĒ্āϰāϏ্āĻĨ āĻ…āĻĒেāĻ•্āώা 3 āĻŽিāϟাāϰ āĻŦেāĻļি ।

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āĻ†ā§ŸāϤāĻ•াāϰ āĻ•্āώেāϤ্āϰেāϰ āĻĒ্āϰāϏ্āĻĨ X āĻŽিāϟাāϰ

āĻ†ā§ŸāϤāĻ•াāϰ āĻ•্āώেāϤ্āϰেāϰ āĻĻৈāϰ্āϘ্āϝ (X+3) āĻŽিāϟাāϰ

āĻ†ā§ŸāϤāĻ•াāϰ āĻ•্āώেāϤ্āϰেāϰ āĻ•āϰ্āĻŖেāϰ āĻĻৈāϰ্āϘ্āϝ = √(āĻĻৈāϰ্āϘ্āϝ2 + āĻĒ্āϰāϏ্āĻĨ2)

āĻļāϰ্āϤাāύুāϏাāϰে,

        image001.png

          āωāϭ⧟āĻĒāĻ•্āώ āĻ•ে āĻŦāϰ্āĻ— āĻ•āϰে āĻĒাāχ ,

      āĻŦা,   X2 + (X + 3)2 = 225

      āĻŦা,   X2 + (X)2 + 2(X)(3) + (3)2 = 225   [ āφāĻŽāϰা āϜাāύি , (a+b)2 = (a)2 + 2 . a . b + (b)2 ]

      āĻŦা,   2X2 + 6X + 9 = 225

      āĻŦা,   2X2 + 6X + 9 - 225 = 0

      āĻŦা,   2X2 + 6X - 216 = 0

      āĻŦা,   2 ( X2 + 3X - 108 ) = 0

      āĻŦা,   X2 + 3X - 108 = 0

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ X2 + 3X - 108 = 0 ।


(ii) āĻāĻ• āĻŦ্āϝāĻ•্āϤি 80 āϟাāĻ•া⧟ে āĻ•ā§ŸেāĻ• āĻ•িāĻ—্āϰা āϚিāύি āĻ•্āϰ⧟ āĻ•āϰāϞেāύ । āϝāĻĻি āĻ“āχ āϟাāĻ•া⧟ে āϤিāύি āφāϰāĻ“ 4 āĻ•িāĻ—্āϰা āϚিāύি āĻŦেāĻļি āĻĒেāϤেāύ āϤāĻŦে āϤাāϰ āĻ•িāĻ—্āϰা āĻĒ্āϰāϤি āϚিāύিāϰ āĻĻাāĻŽ 1 āϟাāĻ•া āĻ•āĻŽ āĻšāϤ ।

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āĻĒ্āϰāϤি āĻ•িāĻ—্āϰা āϚিāύিāϰ āĻŽূāϞ্āϝ X āϟাāĻ•া

∴ 80 āϟাāĻ•া⧟ āĻĒাāĻ“ā§Ÿা āϝাāĻŦে  80/X āĻ•িāĻ—্āϰা āϚিāύি

āĻāĻ–āύ āĻĒ্āϰāϤি āĻ•িāĻ—্āϰা āϚিāύিāϰ āĻĻাāĻŽ (X-1) āϟাāĻ•া āĻšāϞে, 80 āϟাāĻ•া⧟ে āĻĒাāĻ“ā§Ÿা āϝাāĻŦে  80/(X-1) āĻ•িāĻ—্āϰা āϚিāύি

āĻļāϰ্āϤাāύুāϏাāϰে,

   

   

   

   

   

   

   

   

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ X2 - X - 20 = 0 ।


(iii) āĻĻুāϟি āώ্āϟেāĻļāύ āĻāϰ āĻŽāϧ্āϝে āĻĻূāϰāϤ্āĻŦ 300 āĻ•িāĻŽি । āĻāĻ•āϟি āϟ্āϰেāύ āĻĒ্āϰāĻĨāĻŽ āώ্āϟেāĻļāύ āĻĨেāĻ•ে āϏāĻŽāĻŦেāĻ—ে āĻĻ্āĻŦিāϟিāĻ“ āώ্āϟেāĻļāύ āĻ āĻ—েāϞ । āϟ্āϰেāύ āϟিāϰ āĻ—āϤিāĻŦেāĻ— āϘāĻŖ্āϟা⧟ 5 āĻ•িāĻŽি āĻŦেāĻļি āĻšāϞে āϟ্āϰেāύ āϟিāϰ āĻĻ্āĻŦিāϤী⧟ āώ্āϟেāĻļāύ āĻ āϝেāϤে 2 āϘāĻŖ্āϟা āϏāĻŽā§Ÿ āĻ•āĻŽ āϞাāĻ—āϤ ।

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āϟ্āϰেāύ āϟিāϰ āĻ—āϤিāĻŦেāĻ— X āĻ•িāĻŽি/āϘāύ্āϟা

∴ 300 āĻ•িāĻŽি āϝেāϤে āϏāĻŽā§Ÿ āϞাāĻ—āĻŦে 300/X āϘāĻŖ্āϟা   [ āϝেāĻšেāϤু , āϏāĻŽā§Ÿ = āĻĻূāϰāϤ্āĻŦ/āĻ—āϤিāĻŦেāĻ— ]

āϟ্āϰেāύāϟিāϰ āĻ—āϤিāĻŦেāĻ— (X+5) āĻ•িāĻŽি āĻĒ্āϰāϤি āϘāύ্āϟা āĻšāϞে, 300 āĻ•িāĻŽি āϝেāϤে āϏāĻŽāϝ় āϞাāĻ—āĻŦে 300/(X+5) āϘāύ্āϟা   [ āϝেāĻšেāϤু, āϏāĻŽāϝ় = āĻĻূāϰāϤ্āĻŦ/āĻ—āϤিāĻŦেāĻ— ]

āĻļāϰ্āϤাāύুāϏাāϰে,

   

   

   

   

   

   

   

   

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ X2 + 5X - 750 = 0 ।


(iv) āĻāĻ•āϜāύ āϘāĻĄ়ি āĻŦিāĻ•্āϰেāϤা āĻāĻ•āϟি āϘāĻĄ়ি āĻ•্āϰāϝ় āĻ•āϰে 336 āϟাāĻ•াāϝ় āĻŦিāĻ•্āϰি āĻ•āϰāϞেāύ । āϤিāύি āϝāϤ āϟাāĻ•াāϝ় āϘāĻĄ়িāϟি āĻ•্āϰāϝ় āĻ•āϰেāĻ›িāϞেāύ āĻļāϤāĻ•āϰা āϤāϤ āϟাāĻ•া āϤাāϰ āϞাāĻ­ āĻšāϞ ।

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āϘāĻĄ়ি āϟি āϤিāύি X āϟাāĻ•াāϝ় āĻ•্āϰāϝ় āĻ•āϰেāĻ›িāϞেāύ ।

āĻāĻŦং āϘāĻĄ়িāϟি āĻŦিāĻ•্āϰি āĻ•āϰেāĻ›েāύ 336 āϟাāĻ•াāϝ়

∴ āϞাāĻ­ = ( āĻ•্āϰāϝ় āĻŽূāϞ্āϝ - āĻŦিāĻ•্āϰāϝ় āĻŽূāϞ্āϝ ) = (336 - X) āϟাāĻ•া

∴ āĻļāϤāĻ•āϰা āϞাāĻ­ = ( āϞাāĻ­ / āĻ•্āϰāϝ় āĻŽূāϞ্āϝ ) ✕ 100 %

         

āĻļāϰ্āϤাāύুāϏাāϰে,

   

   

   

   

   

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ X2 + 100X - 33600 = 0 ।


(v) āϏ্āϰোāϤেāϰ āĻŦেāĻ— āϘāύ্āϟাāϝ় 2 āĻ•িāĻŽি. āĻšāϞে, āϰāϤāύāĻŽাāĻিāϰ āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে 21 āĻ•িāĻŽি. āĻ—িāϝ়ে āϐ āĻĻূāϰāϤ্āϤ্āĻŦ āĻĢিāϰে āφāϏāϤে 10 āϘāύ্āϟা āϏāĻŽāϝ় āϞাāĻ—ে ।

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āύৌāĻ•াāϰ āĻŦেāĻ— X āĻ•িāĻŽি/āϘāύ্āϟা ।

∴ āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ— = (X+2) āĻ•িāĻŽি/āϘāύ্āϟা ।

āĻāĻŦং āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ— = (X-2) āĻ•িāĻŽি/āϘāύ্āϟা ।

āφāĻŽāϰা āϜাāύি, āϏāĻŽāϝ় = āĻĻূāϰāϤ্āĻŦ / āĻ—āϤিāĻŦেāĻ— ।

∴ āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে 21 āĻ•িāĻŽি. āϝেāϤে āϏāĻŽāϝ় āϞাāĻ—ে 21 / (X+2) āϘāύ্āϟা āĻāĻŦং āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে 21 āĻ•িāĻŽি. āĻĢিāϰে āφāϏāϤে āϏāĻŽāϝ় āϞাāĻ—ে 21 / (X-2) āϘāύ্āϟা ।

āĻļāϰ্āϤাāύুāϏাāϰে,

   

   

   

   

   

   

   

   

   

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ 5X2 - 21X - 20 = 0 ।


(vi) āφāĻŽাāĻĻেāϰ āĻŦাāĻĄ়িāϰ āĻŦাāĻ—াāύ āĻĒāϰিāώ্āĻ•াāϰ āĻ•āϰāϤে āĻŽāĻšিāĻŽ āĻ…āĻĒেāĻ•্āώা āĻŽāϜিāĻĻেāϰ 3 āϘāĻŖ্āϟা āĻŦেāĻļি āϏāĻŽāϝ় āϞাāĻ—ে । āϤাāϰা āωāĻ­āϝ়ে āĻāĻ•āϏāĻ™্āĻ—ে āĻ•াāϜāϟি 2 āϘāĻŖ্āϟাāϝ়ে āĻļেāώ āĻ•āϰāϤে āĻĒাāϰে ।

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āĻŽāĻšিāĻŽেāϰ āĻŦাāĻ—াāύ āĻĒāϰিāώ্āĻ•াāϰ āĻ•āϰāϤে āϏāĻŽāϝ় āϞাāĻ—ে X āϘāύ্āϟা

āĻŽāϜিāĻĻেāϰ āϏāĻŽāϝ় āϞাāĻ—ে (X+3) āϘāύ্āϟা

āφāϰো āϧāϰা āϝাāĻ• āĻŽোāϟ āĻ•াāϜেāϰ āĻĒāϰিāĻŽাāĻŖ 1 āĻ…ংāĻļ।


∴ āĻŽāĻšিāĻŽ X āϘāύ্āϟাāϝ় āĻ•াāϜ āĻ•āϰে 1 āĻ…ংāĻļ

∴ āĻŽāĻšিāĻŽ 1 āϘāύ্āϟাāϝ় āĻ•াāϜ āĻ•āϰে 1/X āĻ…ংāĻļ


∴āĻŽāϜিāĻĻ (X+3) āϘāύ্āϟাāϝ় āĻ•াāϜ āĻ•āϰে 1 āĻ…ংāĻļ

∴āĻŽāϜিāĻĻ 1 āϘāύ্āϟাāϝ় āĻ•াāϜ āĻ•āϰে 1/(X+3) āĻ…ংāĻļ


āĻļāϰ্āϤাāύুāϏাāϰে,

   

   

   

   

   

   

   

   

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ X2 - 4X - 6 = 0 ।


(vii) āĻĻুāχ āĻ…āĻ™্āĻ• āĻŦিāĻļিāώ্āϟ āĻāĻ•āϟি āϏংāĻ–্āϝাāϰ āĻāĻ•āĻ• āϏ্āĻĨাāύীāϝ় āĻ…āĻ™্āĻ• āϟি āĻĻāĻļāĻ• āϏ্āĻĨাāύীāϝ় āĻ…āĻ™্āĻ• āĻ…āĻĒেāĻ•্āώা 6 āĻŦেāĻļি āĻāĻŦং āĻ…āĻ™্āĻ•āĻĻ্āĻŦāϝ়েāϰ āĻ—ুāĻŖāĻĢāϞ āϏংāĻ–্āϝাāϟি āĻĨেāĻ•ে 12 āĻ•āĻŽ ।

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āĻĻুāχ āĻ…āĻ™্āĻ• āĻŦিāĻļিāώ্āϟ āϏংāĻ–্āϝাāϰ āĻĻāĻļāĻ• āϏ্āĻĨাāύীāϝ় āĻ…āĻ™্āĻ• X

∴āĻāĻ•āĻ• āϏ্āĻĨাāύীāϝ় āĻ…āĻ™্āĻ• āĻšāĻŦে (X+6)

āĻĻুāχ āĻ…āĻ™্āĻ•āĻŦিāĻļিāώ্āϟ āϏংāĻ–্āϝাāϟি āĻšāϞ = 10X+(X+6) = 11X+6

āĻļāϰ্āϤাāύুāϏাāϰে,

        X(X+6) = (11X + 6) - 12

      āĻŦা,   X2 + 6X = 11X + 6 -12

      āĻŦা,   X2 + 6X = 11X - 6

      āĻŦা,   2X2 + 6X - 11X + 6 = 0

      āĻŦা,   X2 - 5X + 6 = 0

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ X2 - 5X + 6 = 0 ।


(viii) 45 āĻŽিāϟাāϰ āĻĻীāϰ্āϘ āĻ“ 40 āĻŽিāϟাāϰ āĻĒ্āϰāĻļāϏ্āϤ āĻāĻ•āϟি āφāϝ়āϤāĻ•্āώেāϤ্āϰ āĻ•াāϰ āĻ–েāϞাāϰ āĻŽাāĻ েāϰ āĻŽাāĻ েāϰ āĻŦাāχāϰেāϰ āϚাāϰāĻĒাāĻļে āϏāĻŽাāύ āϚāĻ“āĻĄ়া āĻāĻ•āϟি āϰাāϏ্āϤা āφāĻ›ে āĻāĻŦং āĻ“āχ āϰাāϏ্āϤাāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ 450 āĻŦāϰ্āĻ— āĻŽিāϟাāϰ।

āϏāĻŽাāϧাāύঃ-

āϧāϰি, āϰাāϏ্āϤাāϟি X āĻŽিāϟাāϰ āϚāĻ“āĻĄ়া

∴ āϰাāϏ্āϤা āϏāĻš āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĻৈāϰ্āϘ্āϝ (45+2X) āĻŽিāϟাāϰ

āĻāĻŦং āϰাāϏ্āϤাāϏāĻš āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĒ্āϰāϏ্āĻĨ (40+2X) āĻŽিāϟাāϰ

āĻļāϰ্āϤাāύুāϏাāϰে,

        (45+2X) ✕ (40+2X) - (45✕40) = 450

      āĻŦা,   1800 + 90X + 80X + 4X2 - 1800 = 450

      āĻŦা,   4X2 + 170X - 450 = 0

      āĻŦা,   2 ( 2X2 + 85X - 225 ) = 0

      āĻŦা,   2X2 + 85X - 225 = 0

∴ āύিāϰ্āĻŖে⧟ āĻĻ্āĻŦিāϘাāϤ āϏāĻŽীāĻ•āϰāĻŖ āĻšāϞ 2X2 + 85X - 225 = 0 ।


āϧāύ্āϝāĻŦাāĻĻ । āφāĻļা āĻ•āϰি POST āϟি āĻĨেāĻ•ে āϏāĻŦাāχ āωāĻĒāĻ•ৃāϤ āĻšāĻŦেāύ । āĻāχ POST āϟি āĻ­াāϞ āϞাāĻ—āϞে SHARE āĻ•āϰাāϰ āĻ…āύুāϰোāϧ āϰāχāϞ ।